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Abstract	

This work aims at the integrated scheduling for whole refinery processes with consideration of 

uncertainties in demands and yields. We first define the stochastic scheduling problem for the 

refinery processes. The external and process uncertainties of refineries are represented through the 

extended scenario tree based on the history data. Using a continuous-time representation, a hybrid 

Mixed Integer Nonlinear Programming (MINLP) and Generalized Disjunctive Programming model 

is formulated for the stochastic scheduling of whole refinery processes. To solve the proposed large-

scale stochastic mathematical model with scenarios, we develop an Outer Approximation method 

combined with the Fix-and-Relax strategy to efficiently solve the real scheduling instances. 

Computational results demonstrate the validity of the proposed stochastic model and the efficiency 

of the proposed solution method compared with the MINLP solver DICOPT.  

Keywords: Refinery Processes; Stochastic Scheduling; Scenario Tree; Mixed Integer Nonlinear 

Programming (MINLP); Outer Approximation (OA)  

1. Introduction	

Refinery production processes separate a crude oil or a mixed crude oil into different intermediate 

products, which are then blended as components into final oil products in order to satisfy the market 

demand. Different processing schemes determine the types and amounts of final oil output and 

processing costs, which directly impact refinery production profits. There are several uncertain 

parameters within the entire production processes of a refinery, such as properties of crude oil, 
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processing conditions, volatility of component oils, or demand of final oil products. In addition, the 

supply of crude oil is affected by international political and economic factors, and the demand and 

prices of oil products vary also with seasons, and the economy. Refinery scheduling requires 

determining the processing sequence, amounts and properties of crude oil, intermediate flows, 

component products and final oil products, according to a production plan while optimizing the net 

production profits. Compared to refinery planning, scheduling is aimed at realizing the production 

plan in real process conditions with dynamic changes. A good schedule is able to guarantee accurate 

execution, production profit and flexible response to uncertainties. Therefore, scheduling of refinery 

processes with consideration of uncertainties is a problem of great practical significance.   

Refinery processes are usually a continuous production network with storage tanks of crude oils, 

intermediate products and final oil products. Refinery scheduling involves determining the timetable 

of processed materials, inventory of each intermediate product, blending ratios, and output of final 

oil products over scheduling horizon. Refinery scheduling requires satisfying operation rules, 

production capacities of units, materials and properties balance, inventory capacity, supply of crude 

oil, demand of oil product, and energy consumption constraints. The target is to maximize the net 

profit of production, which is equal to the total product revenue minus cost of raw material and 

production processes. 

Joly et al. (2002) studied the planning and scheduling problems in petroleum refinery, which is 

decomposed into three optimization problems, and proposed a mathematical model based on 

continuous and discrete time representations. Jia and Ierapetritou (2004) also decomposed the 

refinery scheduling for the whole processes into three parts, then formulated three scheduling 

models. Shah et al. (2009) proposed a centralized-decentralized optimization method aiming at the 

integrated scheduling for the whole refinery processes. Shah and Ierapetritou (2011) addressed 

refinery scheduling for a real refinery plant. They proposed a continuous-time formulation for the 

short-term refinery scheduling. Few references have focused on the whole refinery scheduling 

compared with many studies on batch scheduling in processes system engineering (Méndez et al., 

2006). Using processing tasks and continuous-time representation for refinery scheduling was 

shown to be a general feasible method for continuous processes (Ierapetritou and Floudas, 1998).  

The uncertainties of external markets and production processes directly affect the economic 

benefits of a refinery (Guillén et al., 2006). The scheduling of refinery production under uncertain 
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demand considers production scheduling and fluctuations in demand together, so that the profit loss 

due to market changes is kept as small as possible. This is similar for the uncertain of production 

yields. The stochastic scheduling for refinery processes is able to more effectively guarantee the 

production profit of the refinery, whether facing demand or yield uncertainties.  

Stochastic programming, especially two-stage stochastic programming, has been used to address 

scheduling problems with uncertainty (e.g. Goel and Grossmann, 2006). The uncertainty is 

represented through a scenario tree on which the stochastic scheduling problem is defined. The two-

stage stochastic programming decomposes the scheduling decision process into two stages: the first 

stage (“here and now”) without information on the realization of the uncertainties, while the second 

stage (“wait and see”) has access to the full information on the realization of the uncertainties. Engell 

et al. (2004) proposed a two-stage stochastic programming model for the batch scheduling of a 

multiproduct plant. Aiming at the large-scale instances, they used a Lagrangean relaxation method 

to obtain the lower bounds, and decomposed the subproblems to obtain the upper bounds. Pinto et 

al. (2009) addressed a design and scheduling problem of multipurpose batch plant under 

uncertainties. They used a two-stage stochastic Mixed Integer Linear Programming (MILP) model, 

which determines the design variables in the first stage and scheduling variables in the second stages. 

Apap and Grossmann (2017) proposed a general modeling and solution method for multi-stage 

stochastic programming.  

There are certain difficulties in the modeling and solution of stochastic scheduling, especially 

short-term stochastic scheduling. One needs to combine general two-stage stochastic programming 

with scheduling models, which gives rise to large-scale problems. 

To our knowledge, there have been few reported research works on scheduling for whole refinery 

processes under uncertainties of demand orders and product yields. This paper studies the 

production scheduling problem with consideration of uncertainties in refinery processes based on 

the deterministic model of Shah and Ierapetritou (2011). Firstly, the uncertainties of the refinery 

plant are represented through a scenario tree with values and probabilities of the corresponding 

uncertain parameters. This scenario tree is used for the two-stage stochastic programming model for 

the scheduling of refinery production. A hybrid Mixed Integer Nonlinear Programming (MINLP) 

and Generalized Disjunctive Programming (GDP) model is formulated for the stochastic scheduling 

problem based on unit-specific continuous-time representation. To address a real large-scale 
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instance, an Outer Approximation method combining with Fix-and-Relax strategy is developed. 

Finally, the computational experiments based on a real refinery plant are implemented, which show 

the benefits of the stochastic scheduling method. The computational comparison with the DICOPT 

solver shows the effectiveness of the proposed solution algorithm. 

This paper is organized as follows. Section 2 defines the optimal scheduling problem for refinery 

processes with consideration of uncertainties. Section 3 formulates a mathematical model for the 

scheduling problem. Section 4 develops an Outer-Approximation method with Fix-and-Relax 

strategy to solve the proposed model. Section 5 implements the computational experiments based 

on the data of a real refinery plant. Finally, we give some conclusions on the proposed model for 

refinery stochastic scheduling and the solution method.   

2. Problem	statement	

We first give a superstructure flowchart for a typical refinery plant (Shah and Ierapetritou, 2011), as 

shown in Figure 1. In the super-structure flowchart, the circles denote the materials, like raw 

materials, intermediate products, component oils, and final oil products, while the squares denote 

the processing units, like crude distillation units (CDU), fluid catalytic cracking (FCC), and blending 

tanks. For refining units, such as the CDU, there are different side product streams that are 

continuously exiting from the CDU. 

The stochastic scheduling for the whole refinery defined on the super-structure is as follows:  

Given:  

1) process topology network of a refinery plant 

2) processing modes and production capacity of the units 

3) data of raw material, including types, properties, initial inventory, supply capacity 

4) yields of side products for each unit under uncertainties 

5) initial inventory of each intermediate product and final oil products 

6) blending plan 

7) demand orders for oil products with consideration of uncertainties  

8) utility consumption and capacity 

9) inventory capacity for intermediate and final oil products 

10) scheduling time horizon.  
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Figure 1. Superstructure flowchart for whole refinery processes 

The objective of the stochastic scheduling model for refinery production is to maximize the 

expected production profit, which equals to the total value of the output product minus the cost of 

crude oil and consuming energy, the penalties of excess product properties, unsatisfied demand and 

due date. 

Considering the property changes of the material flow over time and the different product yields 

of the refining units under different working conditions, we first define the production scheduling 

tasks for the refinery units. The scheduling tasks are then calculated from a production plan. The 

stochastic scheduling problem of whole-process refinery production requires determining the 

following items in each scenario:  

1) the processing time and processing volume of each processing task in each processing unit 

2) the output and properties of intermediate products 

3) the types and amounts of oil products 

4) the blending ratios of each component for each product 
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5) the energy consumption of each unit.  

The refinery production scheduling must satisfy the following constraints: (1) the material 

balance constraints, (2) the property balance equations of the processing units and the blending unit, 

(3) the standard quality indicators for oil products, (4) the market demand for the oil products, (5) 

the due dates for each order of the oil product, (6) the operation restrictions, and (7) the restrictions 

for comprehensive energy consumption indicator of each refinery equipment. We assume in this 

paper that there is no limit to the supply of crude oil, and that there is no material loss during the 

production processes. 

3. Mathematical	formulation	

We first provide the scenario-tree representation method for the uncertainties. The continuous-time 

representation method is then introduced to depict the scheduling horizon. Finally, we formulate the 

mathematical model of the stochastic scheduling for whole refinery processes.     

3.1 Scenario tree  

Scenario trees are commonly used to represent the uncertainty of production processes or market 

demand. The scenario tree for refinery uncertainties can be obtained based on the historical data of 

refinery processes and markets (Calfa et al., 2014). The moment matching and distribution matching 

methods are generally used to obtain the scenario tree of uncertain data (Høyland and Wallace, 2001; 

Calfa et al., 2014). A general scenario tree is shown as Figure 2 (a). Each path from the root to the 

leaves in the tree represents one scenario, and each node contains the value and probability of the 

uncertain parameter. As there are shared nodes for some scenarios, the scenarios are not directly 

decomposable for scheduling decisions.  

The scenario tree is equivalently reformulated as shown in Figure 2 (b) (Ruszczyński, 1997) with 

nonanticipativity constraints. In Figure 2 (b), the nodes connected with dotted lines are the nodes 

with same values and probabilities. The advantage of the reformulated scenario tree is that it is 

decomposable by scenarios. In this paper, we use the exact moment and distribution method to 

generate the scenario tree (Calfa et al., 2014). The stochastic scheduling for whole refinery processes 

is then defined on the reformulated scenarios set as Figure 2 (b). 
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(a)                                       (b) 

Figure 2. Scenario tree for uncertainties. a) Primal scenario tree, b) Reformulated scenario tree 

3.2 Continuous-time representation 

Aiming at the continuous processes of refinery production, the unit-specific event-based continuous 

time representation method is used to represent the starting time and finishing time of the scheduled 

events for the processing units and storage tanks in Figure 3 (Ierapetritou and Floudas, 1998). The 

production tasks of the processing units and the flow tasks of the materials are regarded as the 

scheduling events. The flow tasks include the flow tasks from the processing units to the storage 

tanks, the flow tasks from the storage tanks to the units, and the flow tasks from the storage tanks 

to the customer orders. We select a fixed number of event points 𝑁!"# for all the units and tanks, 

which represent beginnings of tasks. The detailed times of these event points need to be determined.  

 

Figure 3. Continuous-time representation for whole refinery processes  

3.3 Mathematical model for the refinery stochastic scheduling 

Nomenclature 

Indices 
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X1,1

X2,2 X3,2

X1,3 X2,3 X3,3 X4,3
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X2,1

X2.2

X2.3

X3.1

X3.2

X3.3

X4.1

X4.2

X4.3
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𝑗 units 

𝑘 tanks 

𝑛 events 

𝑜 orders  

𝑝 properties 

𝑞 scenarios 

𝑠 states 

Sets 

𝐼$ set of tasks 𝑖 that are processed in unit 𝑗 

𝐼%& set of tasks 𝑖 that consume state 𝑠 as feed 

𝐼%' set of tasks 𝑖 that produce material 𝑠 

𝐽( set of units 𝑗 that processes task 𝑖 

𝐽𝐶% set of units 𝑗 that take material 𝑠 as feed 

𝐽𝐹$ set of units that directly followed unit 𝑗  

𝐽𝐼) set of units that are fed from the storage tank 𝑘  

𝐽𝑂) set of units that output materials and storage in the oil storage tank 𝑘 

𝐽𝑃% set of units 𝑗 that produce out material 𝑠 

𝐾% set of oil tanks that store material 𝑠 

𝐾𝐷* customer order 𝑜 that correspond oil storage tank 𝑘 

𝐾𝐹% set of oil storage tanks that store final oil product 𝑠 

𝐾𝐼$ set of oil storage tanks that store the feed of unit 𝑗 

𝐾𝑂$ set of oil storage tank that store the produced material from unit 𝑗 

𝑂% customer order that corresponds the final product 𝑠 

𝑄 set of scenarios 𝑞 

𝑆𝐶$ set of materials 𝑠 that are used as feed for unit 𝑗 

𝑆𝐷% set of final products 𝑠 that flow directly to the market 

𝑆𝐼( set of materials 𝑠 that are used as feeds in task 𝑖 

𝑆𝐽$ set of materials 𝑠 that are produced out from unit 𝑗 

𝑆𝑂( set of materials 𝑠 that are produced in task 𝑖 
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𝑆𝑃% set of final products 𝑠 that are stored in oil storage tank 

𝑆𝑇) set of materials 𝑠 that are stored in the oil storage tank 𝑘 

Parameters 

𝐶𝐴$ processing capacity of unit 𝑗 

𝐶𝐶% unit cost of crude oil 𝑠 

𝐶𝐷* unit penalty cost of demand deviation for order 𝑜 

𝐶𝑀% unit penalty cost of market demand deviation for product 𝑠  

𝐶𝑃% unit penalty cost of property deviation for product 𝑠 

𝐶𝑇* unit penalty cost of delivery date deviation for order 𝑜 

𝐶𝑈$ unit cost of energy utility for unit 𝑗 

𝐷*,, demand for final products for orders 𝑜 under scenario 𝑞  

𝐷*,%!(- minimum demand of final product 𝑠 for customer order 𝑜 

𝐷*,%!"# maximum demand of final product 𝑠 for customer order 𝑜 

𝐷%!".) demand for final oil product 𝑠 flowing directly to the market 

𝐹(,$!(- minimum processing rate of unit 𝑗 processing task 𝑖 

𝐹(,$!"# maximum processing rate of unit 𝑗 processing task 𝑖 

𝐺, probability of scenario 𝑞 

𝐻 time horizon of scheduling 

𝑁!"# total number of event points 

𝑃𝑀% unit price of final product 𝑠 flowing to market 

𝑃𝑂* unit price of submitting order 𝑜 from tank 

𝑃𝑃/,%!(- lower limitation of property 𝑝 of material 𝑠 

𝑃𝑃/,%!"# upper limitation of property attribute 𝑝 of material 𝑠 

𝑅,,% product yield of material 𝑠 under scenario 𝑞 

𝑅𝐼(,%!(- lower limit of proportion of feedstock 𝑠 in task 𝑖	 

𝑅𝐼(,%!"# upper limit of proportion of feedstock 𝑠 in task 𝑖	 

𝑅𝐾)!(- minimum rate of output of final oil product from tank 𝑘 

𝑅𝐾)!"# maximum rate of output of final oil product from tank 𝑘 

𝑅𝑂(,%!(- lower limit of yield of production material 𝑠 in task 𝑖 
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𝑅𝑂(,%!"# upper limit of yield of production material 𝑠 in task 𝑖 

𝑇(!(- minimum processing time of task 𝑖 

𝑇*%0".0 starting time of customer order 𝑜 

𝑇*1-2 finishing time of customer order 𝑜 

𝑈<$ unit production energy consumption of unit 𝑗 

𝑉),%(-( initial inventory of material 𝑠 in oil storage tank 𝑘 

𝑉)!"# maximum storage capacity of oil tank 𝑘  

𝜃$ fixed energy consumption fraction of unit 𝑗 

Binary / Boolean Variables 

𝑥(,$,-,, 1 when unit 𝑗 executes task 𝑖 at event point 𝑛 under scenario 𝑞, otherwise 0 

𝑋(,$,-,, Boolean variable, true when unit 𝑗 executes task 𝑖 at event point 𝑛 under 

scenario 𝑞, otherwise false 

𝑦$,),-,,,% 1 when material 𝑠 flows from unit 𝑗 to tank 𝑘 at event point 𝑛 under scenario 

𝑞, otherwise 0 

𝑌$,),-,,,% Boolean variable, true when material 𝑠 flows from unit 𝑗 to tank 𝑘 at event 

point 𝑛 under scenario 𝑞,	otherwise false 

𝑧$,),-,,,% 1 when material 𝑠 flows from tank 𝑘 to unit 𝑗 at event point 𝑛 under scenario 

𝑞, otherwise 0 

𝑍$,),-,,,% Boolean variable, true when material 𝑠 flows from tank 𝑘 to unit 𝑗 at event 

point 𝑛 under scenario 𝑞, otherwise false 

𝑢),-,*,, 1 when material 𝑠 flows from tank 𝑘 to order 𝑜 at event point 𝑛 under 

scenario 𝑞, otherwise 0 

𝑈),-,*,, Boolean variable, true when material 𝑠 flows from tank 𝑘 to order 𝑜 at event 

point 𝑛 under scenario 𝑞, otherwise false 

𝑤),-,,,% 1 when material 𝑠 stores in tank 𝑘 at event point 𝑛 under scenario 𝑞, otherwise 

0 

Continuous Variables 

𝐵𝑀,,%
3  penalty fraction of final product 𝑠 flowing directly to market less than demand 

under scenario 𝑞 
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𝐵𝑃-,/,,,%3  penalty fraction of property 𝑝 of material 𝑠 less than lower limit of property 

attribute under scenario 𝑞 

𝐵𝑃-,/,,,%4  penalty fraction of property attribute 𝑝	of material 𝑠 greater than upper limit of 

property attribution under scenario 𝑞 

𝐵𝑇*,,5  penalty fraction for start time of customer order 𝑜 less than the earliest start time 

under scenario 𝑞  

𝐵𝑇*,,3  penalty fraction for finishing time of customer order 𝑜 greater than the latest 

finishing time under scenario 𝑞 

𝐹𝐶$,-,,,% flow rate of crude oil 𝑠 to unit 𝑗 at event 𝑛 in scenario 𝑞 

𝐹𝐷$,$ ′,-,,,% flow of material 𝑠 directly from unit 𝑗 to unit 𝑗′ at event point 𝑛 under 

scenario 𝑞 

𝐹𝐽$,),-,,,% flow of material 𝑠 from unit 𝑗 to storage tank 𝑘 at event 𝑛 under scenario 𝑞 

𝐹𝐾$,),-,,,% flow rate of material 𝑠 from storage tank 𝑘 to unit 𝑗 at event point 𝑛 under 

scenario 𝑞 

𝐹𝑀$,-,,,% flow of final product 𝑠 directly to the market produced by unit 𝑗 at event point 𝑛 

under scenario 𝑞  

𝐹𝑂),-,*,, flow of final product from oil storage tank 𝑘 to customer order 𝑜 at point 𝑛 

under scenario 𝑞 

𝐹𝑈),-,,,% flow of crude oil 𝑠 to oil storage tank 𝑘 at event point 𝑛 in scenario 𝑞 

𝑅𝑃/,,,% property 𝑝 value of material 𝑠 under scenario 𝑞 

𝑅𝑊$,, work load of unit 𝑗 under scenario 𝑞 

𝑇𝐼(,$,-,,6  time that task 𝑖 starts in unit 𝑗 at event 𝑛 under scenario 𝑞 

𝑇𝐼(,$,-,,5  time that task 𝑖 finishes in unit 𝑗 at event point 𝑛 under scenario 𝑞 

𝑇𝐽$,),-,,6  time that material flow starts from unit 𝑗 to oil storage tank 𝑘 at event 𝑛 under 

scenario 𝑞 

𝑇𝐽$,),-,,5  time that material flow finishes from unit 𝑗 to oil storage tank 𝑘 at event point 𝑛 

under scenario 𝑞 

𝑇𝐾$,),-,,6  time that material flow starts from the oil storage tank 𝑘 to unit 𝑗 at point 

𝑛	under scenario 𝑞 
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1) Assignment constraints 

In each scenario	𝑞, each task 𝑖 is only processed in one unit 𝑗 at time event 𝑛, as stated in Eq. 

(1). 

The material produced from the unit 𝑗 can only flow to one storage tank, as stated in Eq. (2). 

The loading operations and unloading operations of the final oil-product storage tanks are not 

allowed to occur simultaneously in order to keep the consistence of the oil product qualities. Hence, 

Eq. (3) indicates that the material flowing from the unit to the storage tank and from the storage 

tank to the order are not simultaneously performed at the same time event.  

2) Material flow constraints 

The mass balance constraints are satisfied for each processing unit, for which the total amount of 

feeding materials must be equal to the total amount of produced materials under each scenario, as 

given by Eq. (4). Considering the limitations of the refining technology, the feeding ratio of one 

material for unit		𝑗 need be constrained between the upper ratio and lower ratio of the total feeding 

𝑇𝐾$,),-,,5  time that material flow finishes from tank 𝑘 to unit 𝑗 at point 𝑛 under scenario 

𝑞 

𝑇𝑂),-,*,,6  time that final oil product flow starts flowing from storage tank 𝑘 to order 𝑜 at 

event point 𝑛 under scenario 𝑞 

𝑇𝑂),-,*,,5  time that final oil product flow finishes from storage tank 𝑘 to order 𝑜 at event 

point 𝑛 under scenario 𝑞 

𝑈𝐶$,, synthesis energy consumption of unit 𝑗 under scenario 𝑞 

𝑉),-,,,% storage amount of material 𝑠 in oil storage tank 𝑘 at event point 𝑛 under 

scenario 𝑞 

𝑊𝐼(,$,-,,,% feeding amount of material 𝑠 when unit 𝑗 executes task 𝑖 at event point 𝑛 

under scenario 𝑞 

𝑊𝑂(,$,-,,,% production amount of material 𝑠 when unit 𝑗 executes task 𝑖 at event point 𝑛 

under the scenario 𝑞 

K𝑥(,$,-,,
$∈8!

≤ 1,    															∀	𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄.
 

   (1) 

K 𝑦$,),-,,,%
)∈9"∩9'#

≤ 1,   																														 ∀𝑗 ∈ 𝐽𝑃%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝑃%

 
(2) 

K 𝑦$,),-,,,%
%∈;<$

+ K 𝑢),-,*,,
*∈'"

≤ 1,   										 ∀𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄.
 

(3) 
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materials under each scenario, as shown in Eq. (5). Similarly, the product yield of one material is 

also limited between the upper and lower bounds, as stated in Eq. (6).  

Eq. (7) describes that the feeding flow of each refinery unit consists the materials feed from the 

oil storage tank, the materials produced from the last directly connected unit, and the supply of crude 

oil. Eq. (8) represents that the output material of each processing unit flows to the oil storage tank, 

the next directly connected unit as feeding stock, and the supply market as the final oil product.  

For the first event of the scheduling horizon, the storage amounts of materials in the oil tank 𝑘 

is equal to the initial inventory, plus the sum of the material flow produced from the processing units, 

and the flow of crude oil to the oil storage tank 𝑘, minus the material flow to the following units 

and the flow to the customer order, as stated in Eq. (9). For the events 𝑛 ≥ 2 in the scheduling 

horizon, the storage amounts of materials in the oil tank 𝑘 is equal to the storage amount of the 

event 𝑛 − 1, plus the material flow produced from the processing unit and the crude oil flow to the 

oil storage tank	𝑘, minus the material flow from the oil storage tank to the following units and the 

material flow from the oil storage tank to the customer order, as shown in Eq. (10).  

 

K 𝑊𝐼(,$,-,,,%
%∈;&!

= K 𝑊𝑂(,$,-,,,%
%∈;'!

,																								∀	𝑖 ∈ 𝐼$ , 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄 (4) 

𝑅𝐼(,%!(- K 𝑊𝐼(,$,-,,,%=
%=∈;&!

≤ 𝑊𝐼(,$,-,,,% ≤ 𝑅𝐼(,%!(- K 𝑊𝐼(,$,-,,,%=
%=∈;&!

,	

 																																																																																					∀	𝑖 ∈ 𝐼𝐶%, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆

 

(5) 

𝑅𝑂(,%!(- K 𝑊𝐼(,$,-,,,%=
%=∈;&!

≤ 𝑊𝑂(,$,-,,,% ≤ 𝑅𝑂(,%!"# K 𝑊𝐼(,$,-,,,%=
%=∈;&!

,	

               																																																															∀	𝑖 ∈ 𝐼𝑃%, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆.

 

(6) 

K 𝑊𝐼(,$,-,,,%
(∈&#∩&"%

= K 𝐹𝐾$,),-,,,%
)∈9&#∩9"

+ K 𝐹𝐷$ ′,$,-,,,%
$ ′∈8>#∩8?"

+ 𝐹𝐶$,-,,,%	,	

                                                     						∀	𝑗 ∈ 𝐽𝐶%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆

 

(7) 

K 𝑊𝑂(,$,-,,,%
(∈&#∩&"&

= K 𝐹𝐽$,),-,,,%
)∈9'#∩9"

+ K 𝐹𝐷$,$′,-,,,%
$ ′∈8>#∩8@"

+ 𝐹𝑀$,-,,,%		,	

                                                    							∀	𝑗 ∈ 𝐽𝑃%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆	.

 

(8) 

𝑉),-,,,% = 𝑉),%(-( + K 𝐹𝐽$,),-,,,%
$∈8'$∩8?"

+ 𝐹𝑈),-,,,% − K 𝐹𝐾$,),-,,,%
$∈8'$

− K 𝐹𝑂),-,*,,
*∈'"

,	

                                                            ∀	𝑘 ∈ 𝐾%, 𝑛 = 1, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆

 

(9) 
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3) Processing capacity constraints 

The capacities of the processing units and the blending units must also be considered. The total 

amount of produced materials should lie between the maximum and minimum production capacities, 

which equal to the flow limitations times the processing durations in Eq. (11). The total amount of 

produced materials should be less than the maximum flow rate products the scheduling horizon 

under scenario 𝑞 if the corresponding task is processed as shown in Eq. (12). 

4) Capacity constraints for storage tank  

The amount of materials in the storage tank is less than the maximum storage capacity of the oil 

storage tank, as stated in Eq. (13). Similarly, the material flows from the unit 𝑗 to the oil storage 

tank 𝑘, the flows from the oil storage tank 𝑘 to the unit 𝑗, and the final oil products from the oil 

storage tank 𝑘 to the order 𝑜 are also be less than the maximum storage capacity of the oil storage 

tank, shown in Eqs. (14)-(16).  

5) Output constraint of final oil products 

The delivery amount of the final oil products to one customer order 𝑜 is less than the maximum 

delivery rate products the delivery duration, and greater than the minimum delivery rate times the 

delivery duration, as stated in Eq. (17).   

6) Property limitations for final oil products 

𝑉),-,,,% = 𝑉),-BC,,,% + K 𝐹𝐽$,),-,,,%
$∈8'$∩8?"

+ 𝐹𝑈),-,,,% − K 𝐹𝐾$,),-,,,%
$∈8'$

− K 𝐹𝑂),-,*,,
*∈'"

,	

                                                            ∀	𝑘 ∈ 𝐾%, 𝑛 ≥ 2, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆	.

 

(10) 

𝐹(,$!(-( 𝑇𝐼(,$,-,,5 − 𝑇𝐼(,$,-,,6 ) ≤ K 𝑊𝑂(,$,-,,,%=
%′∈;'!

≤ 𝐹(,$!"#(𝑇𝐼(,$,-,,5 − 𝑇𝐼(,$,-,,6 )	,   	

                                                            ∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄 
(11) 

K 𝑊𝑂(,$,-,,,%=
%′∈;'!

≤ H	𝐹(,$!"#	𝑥(,$,-,, ,      																				∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄	. (12) 

𝑉),-,,,% ≤ 𝑉)!"# 𝑤),-,,,% 	 ,   											∀	𝑘 ∈ 𝐾%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆

 

(13) 

𝐹𝐽$,),-,,,% ≤ 𝑉)!"#𝑦$,),-,,,%	,   							∀	𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝑂$ , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝑇)

 

(14) 

𝐹𝐾$,),-,,,% ≤ 𝑉)!"#𝑧$,),-,,,%	,    					∀	𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾𝐼$ , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝑇)

 

(15) 

𝐹𝑂),-,*,, ≤ 𝑉)!"#𝑢),-,*,,	,    								∀	𝑘 ∈ 𝐾%, 𝑛 ∈ 𝑁, 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄	.

 

(16) 

𝑅𝐾)!(-(𝑇𝑂),-,*,,5 − 𝑇𝑂),-,*,,6 ) ≤ 𝐹𝑂),-,*,, ≤ 𝑅𝐾)!"#(𝑇𝑂),-,*,,5 − 𝑇𝑂),-,*,,6 )	,	

                                                         ∀	𝑘 ∈ 𝐾𝐹%, 𝑛 ∈ 𝑁, 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄	.				
 

(17) 
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The properties of the final oil products must satisfy the specified quality requirements, which are 

based on the standards for final oil products. Some properties of final oil products, like sulfur content, 

must be less than the limit of the upper bounds as shown in Eq. (18). Some properties of final oil 

products, like the Octene number, must be greater than the specified lower bound shown in Eq. (19). 

The relaxed variables are added in Eqs. (18)-(19) in order to describe the amounts exceeding the 

quality standards, which also are the profit margins for refinery production. Here, the property 

balance equation of the final products is simplified as that the property of final oil product times the 

amount of oil products equals the summation of the component properties times the component 

amount. Since the property and the processing amount of final oil products are all variables, that 

give rise to the bilinear terms in both Eqs. (18)-(19).  

7) Demand constraints 

The final oil products flowing directly to the market meet the market demand with a penalty 

fraction as shown in Eq. (20). Considering the uncertainty of product demand, Eq. (21) shows the 

total flow of the final product from the oil storage tank to the customer order 𝑜, is equal to the 

customer order amount for the final product under the scenario 𝑞.  

8) Product yield constraints 

The uncertainties of yield make the production amount of the side-products uncertain, which in 

turn make the flows to the downstream units uncertain. Hence, the uncertain yields affect the 

production scheduling for the entire refinery process. For each yield scenario, the production amount 

of a certain side-product is equal to the scenario yield of the side product products the total crude 

oil feed as shown in Eq. (22). 

K 𝑅𝑃/,,,%′	𝑊𝐼(,$,-,,,%=
(∈&"',%′∈;&!

/K𝑊𝑂(,$,-,,,%
(∈&"'

≤ 𝑅𝑃/,%!"#[1 − 𝐵𝑃-,/,,,%4 \	,  	

                              							  																											∀	𝑗 ∈ 𝐽𝑃%, 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝑃%

 

(18) 

K 𝑅𝑃/,,,%=	𝑊𝐼(,$,-,,,%=
(∈&"&,%′∈;&!

/K𝑊𝑂(,$,-,,,%
(∈&"'

≥ 𝑅𝑃/,%!(-[1 + 𝐵𝑃-,/,,,%3 \ ,	

                                																																			∀	𝑗 ∈ 𝐽𝑃%, 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝑃%	.

 

(19) 

𝐷%!".)[1 + 𝐵𝑀,,%
3 \ ≤ K 𝐹𝑀$,-,,,%

$∈8?",-

	 ,    							∀	𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆𝐷%
 

(20) 

K 𝐹𝑂),-,*,,
)∈9D(,-

= 𝐷*,,	,  																																					∀	𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄	.
 

(21) 

𝑊𝑂(,$,-,,,% = 𝑅,,%   K 𝑊𝐼(,$,-,,,%=
%′∈;&!

	 , 																					∀	𝑖 ∈ 𝐼%' , 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆	.

 
(22) 



16 

 

9) Timing constraints 

In order to avoid frequent changeovers of the unit, the processing time of one task in a unit is 

greater than a minimum time limitation if the logic variable 𝑋(,$,-,, is true, as given by the first 

constraint in Eq. (23). The second constraint in Eq. (23) states that the starting time of the task 𝑖′ 

at the (𝑛 + 1)0E event is greater than the finishing time of the task 𝑖 for the processing unit 𝑗. We 

use a disjunctive term constraint to represent this relationship between assignment variable and 

timing variables (Grossmann and Trespalacios, 2013). Compared with the big-M constraints from 

Shah & Ierapetritou (2011), the proposed disjunctive terms constraints are potentially tighter for 

these time constraints. Hence, we use disjunctive constraints in the following model to depict the 

timing constraints. 

Eq. (24) states that the finishing time of the task processed in the unit is greater than its starting 

time. When the unit executes the same tasks, the starting time of the (𝑛 + 1)0E time event is greater 

than the finishing time of the 𝑛0E event point, as stated in Eq. (25).  

For two consecutive processing units with no intermediate storage tank, the starting time and 

finishing time of the two units executing the continuous tasks are equal. Here, the disjunctive 

constraints are used to represent the timing relationships when the assignment logic variables are 

true, as shown in Eq. (26). Eq. (26) is an embedded disjunctive constraint for the timing constraints 

(Grossmann and Trespalacios, 2013). 

For the storage tanks	𝑘, the finishing time of the material flow from the unit to the storage tank is 

greater than its starting time as shown in Eq. (27). The starting time of the material flow from the 

unit to the storage tank at the event point 𝑛 + 1 is greater than the finishing time of the current 

]

𝑋(,$,-,,
𝑇𝐼(,$,-,,5 − 𝑇𝐼(,$,-,,6 ≥ 𝑇(!(-

𝑇𝐼(=,$,-FC,,6 ≥ 𝑇𝐼(,$,-,,5
^V `

¬𝑋(,$,-,,
𝑇𝐼(,$,-,,5 = 𝑇𝐼(,$,-,,6 b	, 

																																																																																										∀	𝑖 ≠ 𝑖′ ∈ 𝐼, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄	. 

(23) 

𝑇𝐼(,$,-,,5 ≥ 𝑇𝐼(,$,-,,6 	,    				∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄
 

(24) 

𝑇𝐼(,$,-FC,,6 ≥ 𝑇𝐼(,$,-,,5 	,   ∀	𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽( , 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑞 ∈ 𝑄	. (25) 

⎣
⎢
⎢
⎢
⎡

𝑋(,$,-,,

V	∀(′∈&#′,$′∈8># ]

𝑋(′,$′,-,,
𝑇𝐼(′,$′,-,,6 = 𝑇𝐼(,$,-,,6

𝑇𝐼(′,$′,-,,5 = 𝑇𝐼(,$,-,,5
^ V ]

¬𝑋(′,$′,-,,
𝑇𝐼(′,$′,-,,6 ≤ 𝐻
𝑇𝐼(′,$′,-,,5 ≤ 𝐻

^
⎦
⎥
⎥
⎥
⎤
V ]

¬𝑋(,$,-,,
𝑇𝐼(,$,-,,6 ≤ 𝐻
𝑇𝐼(,$,-,,5 ≤ 𝐻

^	,			 

																																																																																																					∀	𝑖 ∈ 𝐼$ , 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄	.	 

(26) 
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event point 𝑛, as stated in Eq. (28). Similarly, the timing constraints for the material flow from oil 

storage tank 𝑘 to the unit	𝑗 are shown by Eqs. (29)-(30). 

For the storage tank 𝑘 of the intermediate products, the starting (finishing) time of the material 

flow from the unit to the intermediate tank is equal to the starting (finishing) time of the material 

from the intermediate tank flowing to the next unit when the loading and unloading assignment 

logic variables for tank 𝑘 are both true at the same event 𝑛 as shown in Eq. (31).  

Considering the continuous processes, for the storage tank 𝑘 storing the material produced from 

the unit 𝑗, the beginning and finishing times processing the task 𝑖 in the unit 𝑗 are equal to the 

beginning and finishing times for the material flowing from the unit 𝑗 to the oil storage tank 𝑘 

when both assignment variables 𝑌$,),-,,,% and 𝑋(,$,-,, are true as stated in Eq. (32).  

For the storage tank 𝑘 of crude oil, the beginning and finishing times of the crude oil flows from 

the storage tank 𝑘 to the processing unit 𝑗 is same to the beginning and finishing times of the task 

𝑖  processed in the unit 𝑗  at time event 𝑛  when the assignment logic variables 𝑍$,),-,,,%  and 

𝑋(,$,-,, are both true as shown by Eq. (33).  

For the storage tank 𝑘 of the final oil products, the finishing time of the final product flowing 

𝑇𝐽$,),-,,5 ≥ 𝑇𝐽$,),-,,6 	,    						∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄
 

(27) 

𝑇𝐽$,),-FC,,6 ≥ 𝑇𝐽$,),-,,5 	,    		∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑞 ∈ 𝑄 (28) 

𝑇𝐾$,),-,,5 ≥ 𝑇𝐾$,),-,,6 	,    				∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄 (29) 

𝑇𝐾$,),-FC,,6 ≥ 𝑇𝐾$,),-,,5 	,   ∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑞 ∈ 𝑄	. (30) 

⎣
⎢
⎢
⎢
⎡

𝑌$,),-,,,%

V	$=∈8&$ ]

𝑈$=,),-,,,%
𝑇𝐽$,),-,,6 = 𝑇𝐾$=,),-,,6

𝑇𝐽$,),-,,5 = 𝑇𝐾$=,),-,,5
^ V ]

¬𝑈$=,),-,,,%
𝑇𝐾$=,),-,,6 ≤ 𝐻
𝑇𝐾$=,),-,,5 ≤ 𝐻

^
⎦
⎥
⎥
⎥
⎤
V ]

¬𝑌$,),-,,,%
𝑇𝐽$,),-,,6 ≤ 𝐻
𝑇𝐽$,),-,,5 ≤ 𝐻

^	,			 

																																																																																					∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆	. 

(31) 

⎣
⎢
⎢
⎢
⎡

𝑌$,),-,,,%

V	(∈&# ]

𝑋(,$,-,,
𝑇𝐽$,),-,,6 = 𝑇𝐼(,$,-,,6

𝑇𝐽$,),-,,5 = 𝑇𝐼(,$,-,,5
^ V ]

¬𝑋(,$,-,,
𝑇𝐼(,$,-,,6 ≤ 𝐻
𝑇𝐼(,$,-,,5 ≤ 𝐻

^
⎦
⎥
⎥
⎥
⎤
V ]

¬𝑌$,),-,,,%
𝑇𝐽$,),-,,6 ≤ 𝐻
𝑇𝐽$,),-,,5 ≤ 𝐻

^	,			 

																																																																																	∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆. 

(32) 

⎣
⎢
⎢
⎢
⎡

𝑍$,),-,,,%

V	(∈&# ]

𝑋(,$,-,,
𝑇𝐾$,),-,,6 = 𝑇𝐼(,$,-,,6

𝑇𝐾$,),-,,5 = 𝑇𝐼(,$,-,,5
^ V ]

¬𝑋(,$,-,,
𝑇𝐼(,$,-,,6 ≤ 𝐻
𝑇𝐼(,$,-,,5 ≤ 𝐻

^
⎦
⎥
⎥
⎥
⎤
V ]

¬𝑍$,),-,,,%
𝑇𝐾$,),-,,6 ≤ 𝐻
𝑇𝐾$,),-,,5 ≤ 𝐻

^	,			 

																																																																																			∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾%, 𝑛 ∈ 𝑁, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆. 

(33) 
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from the oil storage tank 𝑘 to the order 𝑜 is greater than its start time, as shown in Eq. (34). Eq. 

(35) states that the starting time of the oil product flowing from the storage tank 𝑘 to the order 𝑜 

at the (𝑛 + 1)0E event point is greater than the finishing time of the 𝑛0E event point.  

Eq. (36) requires that the starting time of the final product flowing from the storage tank 𝑘 to 

the next order 𝑜’ at the (	𝑛 + 1)0E event be greater than the finishing time of the order 𝑜 at the 

nth event when the assignment logic variable 𝑈),-,*,, is true. 

Eq. (37) states that the starting time of the oil product flowing from the storage tank 𝑘 to the 

order 𝑜 at the (𝑛 + 1)0E event point is greater than the finishing time of the material flow from 

the unit	𝑗 to the oil storage tank 𝑘	at the 𝑛0E event point.  

The starting time of the material flow from the unit	𝑗 to the oil storage tank 𝑘 at the (𝑛 + 1)0E 

event point is greater than the finishing time of product flow from the storage tank 𝑘 to the order 

𝑜 at the 𝑛0E event point under scenario 𝑞 as shown in Eq. (38). The time of the final product 

flowing from the storage tank 𝑘 to the order 𝑜 must be within the customer's order time windows 

under scenario 𝑞 . Here, the relaxed variables 𝐵𝑇*,,6  and 𝐵𝑇*,,5  of the delivery times are 

introduced to relax the order delivery time windows. 

10) Energy consumption constraints 

The total energy consumption of processing unit 𝑗 in refinery production under each scenario 𝑞 

is calculated from Eqs. (39)-(40) (Guo and Xu, 2004).  

𝑇𝑂),-,*,,5 ≥ 𝑇𝑂),-,*,,6 	,    				∀	𝑘 ∈ 𝐾𝐹%, 𝑛 ∈ 𝑁, 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄
 

(34) 

𝑇𝑂),-FC,*,,6 ≥ 𝑇𝑂),-,*,,5 	,    ∀	𝑘 ∈ 𝐾𝐹%, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄. (35) 

`
𝑈),-,*,,

𝑇𝑂),-FC,*′,,6 ≥ 𝑇𝑂),-,*,,5 b V `
¬𝑈),-,*,,

𝑇𝑂),-,*,,5 ≤ 𝐻b	, 

																																																					∀	𝑘 ∈ 𝐾𝐹%, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑜 ≠ o′ ∈ 𝑂%, 𝑞 ∈ 𝑄. 
(36) 

`
𝑌$,),-,,,%

𝑇𝑂),-FC,*,,6 ≥ 𝑇𝐽$,),-,,5 b V `
¬𝑌$,),-,,,%

𝑇𝐽$,),-,,5 ≤ 𝐻b	, 

																																															∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾%, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆. 
(37) 

⎣
⎢
⎢
⎢
⎡

𝑈),-,*,,
𝑇𝐽$,),-FC,,6 ≥ 𝑇𝑂),-,*,,5

𝑇𝑂),-,*,,6 ≥ 𝑇*%0".0[1 − 𝐵𝑇*,,6 \
𝑇𝑂),-,*,,5 ≤ 𝑇*1-2[1 + 𝐵𝑇*,,5 \ ⎦

⎥
⎥
⎥
⎤

V m
¬𝑈),-,*,,

𝑇𝑂),-,*,,6 ≥ 0
𝑇𝑂),-,*,,5 ≤ 𝐻

o	,	 

																																																							∀	𝑗 ∈ 𝐽𝑂) , 𝑘 ∈ 𝐾𝐹%, 𝑛 ∈ 𝑁, 𝑛 < 𝑁!"# , 𝑜 ∈ 𝑂%, 𝑞 ∈ 𝑄. 

(38) 

𝑅𝑊$,, =
∑ 𝑊𝐼(,$,-,,,%(∈&#,%∈;@#,-

𝐶𝐴$
  ,   							∀	𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄

 
(39) 
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11) Objective function 

The objective function is to maximize the expected net profit, which is equal to the summation 

of the scenario probabilities times the net total profit under each scenario as shown in Eq. (41). The 

expected production profit is equal to the total income of final oil product minus the overall cost of 

crude oil, the penalties of product properties, demand, due date and energy consumption. 

The proposed model is a hybrid MINLP and GDP formulation with integer and logic variables, 

continuous variables, nonconvex bilinear constraints. Furthermore, there are up to five indices in 

the variables making the problem size to be very large for real instances. 

Since the refinery scheduling model can be decomposed by scenario 𝑞, we can represent in 

general form the scheduling model as follows: 

where the binary variable 𝑌q, is related to the realization of scenario 𝑞, 𝑋q, corresponds to the 

continuous variables under the scenario 𝑞. Therefore, the proposed mathematical model can be 

decomposed by scenarios.  

The general disjunctive constraints in Eq. (42) are reformulated into algebraic constraints through 

big-M  and hull relaxation (Grossmann and Trespalacios, 2013). Compared with the big-M 

reformulation of GDP model, the hull relaxation reformulation generally leads to tighter 

representation for primal problem at the expense of increasing number of variables. Considering the 

large-scale of the proposed model, we apply the big-M reformulation for the disjunctive term 

𝑈𝐶$,, = 𝑈s$ `1 + 𝜃$ t
1

𝑅𝑊$,,
− 1ub K 𝑊𝐼(,$,-,,,%

(∈&#,%∈;@#,-

	 ,    ∀	𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄.

 
(40) 

max  𝑍H5<I = K𝐺,
,∈J

[ K 𝑃𝑂*𝐹𝑂),-,*,,
)∈9",-,*∈'"

+ K 𝑃𝑀%𝐹𝑀$,-,,,%
$∈8?",-,%∈;D"

											

− K 𝐶𝐶%𝐹𝑈),-,,,%
)∈9",-,%

 − K 𝐶𝐶%𝐹𝐶$,-,,,%
$,-,%

 

																														− K 𝐶𝑃/,%(𝐵𝑃-,/,,,%3

-,/,%∈;?"

+ 𝐵𝑃-,/,,,%4 ) − K 𝐶𝑀%𝐵𝑀,,%
3

%∈;D"

 

																														− K 𝐶𝑇*(𝐵𝑇*,,6
*∈'"

+ 𝐵𝑇*,,5 ) −K𝐶𝑈$𝑈𝐶$,,
$

]	. 

(41) 

max						 𝑍H5<I =∑ 𝐺,[𝑓[𝑋q,\ + 𝐶<𝑌q,\,∈J   

s. t.											A,𝑋q, + 𝐵,𝑌q, ≤ 𝑏q,						∀	𝑞 ∈ 𝑄 

																	V	,∈J `
𝑌q, = 1

A=,𝑋q ≤ 𝑏q′,
b	 

																	𝑋q, , 𝑌q, ∈ {0, 1}, 

(42) 
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constraints. In this way the proposed hybrid model is transformed into an MINLP model, which is 

able to be solved through standard MINLP solvers. 

4. Outer	Approximation	based	on	Fix-and-Relax	strategy	 	

The transformed MINLP model can be solved through a general MINLP method, like Outer 

Approximation (OA), Generalized Benders Decomposition (GBD), LP-based Branch and Bound 

etc. (Grossmann, 2002). Duran and Grossmann (1986) proposed the OA algorithm for general 

MINLP models, which decomposes the MINLP into a Nonlinear Programming (NLP) subproblem 

and an MILP master problem. With fixed binary variables, the MINLP model is reduced to an NLP 

model, which predicts lower bounds of the MINLP model. Based on linearization of nonlinear 

functions, the MINLP is approximated into an MILP, which is solved to obtain a new value for the 

binary variables and an upper bound of the primal problem. The OA method solves NLP and MILP 

iteratively until satisfying the convergence conditions. Su et al. (2015, 2018) addressed the improved 

strategies for OA with multi-generation cuts, hybrid cuts, partial surrogate cuts and quadratic cuts. 

The scheduling model for the whole-process refinery production problem under uncertainties 

contains a large number of discrete, continuous variables, linear and nonlinear equations. Moreover, 

by increasing the number of scenarios, the problem size of the MINLP model greatly increases. The 

general OA method has difficulty in efficiently solving such the large-scale MINLPs.  

Escudero and Salmeron (2005) and Cadarso et al. (2018) designed the Fix-Relax method to 

decompose the large-scale MILP problem into multiple MILP sub-problems based on the subset-

division of integer variables. By fixing or relaxing the integer variables of certain MILP sub-

problems, the MILP solution method based on Fix-and-Relax strategy is able to reduce the solution 

time of the primal MILP.  

To address the proposed large-scale decomposable MINLP model with scenarios, we develop OA 

based on Fix-and-Relax strategy (OA-FR). First, the scenarios are clustered into the subsets 

according to certain criteria. Considering that the scheduling problem is decomposable by scenario, 

the primal MINLP problem is decomposed into multiple MINLP sub-problems according to the 

subset of scenarios. Then by fixing and relaxing the integer variables of the subset problems in turn, 

we solve the relaxed MINLP subproblems to replace the solution of primal MINLP. 
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The scenario set 𝑄 is decomposed into several subset 𝑄!=;46 , 𝑚′ = 1,… ,𝑀, as shown in Figure 

4. For each scenario subset 𝑚, the scenarios subsets are divided into three parts as (1, … ,𝑚 − 1), 

𝑚 and (𝑚 + 1,… ,𝑀). For the first part of the subsets with 𝑚′ = 1,… ,𝑚 − 1, we fix the values 

of the continuous and integer variables as 𝑋,>&K, 𝑌,>&K. For the third part of the subsets with 𝑚′ =

𝑚 + 1,… ,𝑀, we relax the integer variables into the continuous variables as 𝑌, ∈ [0,1]. All the 

variables in the second part of the subset 𝑚′ = 𝑚 and the continuous, relaxed integer variables in 

the third part 𝑚′ = 𝑚 + 1,… ,𝑀 are to be determined in this iteration. 

Figure 4. Illustration of clustering scenarios into 𝑀 subsets and three subset parts for each 𝑚 

The generated subproblem 𝑠𝑢𝑏𝑃!, 𝑚 = 1, . . . , 𝑀 model in OA-FR	is given by the following 

formulation:  

Here, the first subproblem, 𝑠𝑢𝑏𝑃!LC, is obtained by relaxing the integer variables in scenario subset 

𝑚′ = 2,… ,𝑀 into continuous variables between [0, 1]. The last subproblem, 𝑠𝑢𝑏𝑃!LM, is then 

obtained by fixing the variables in scenario subset 𝑚′ = 1,… ,𝑀 − 1. The subproblems 𝑠𝑢𝑏𝑃!,

𝑚 = 1, . . . , 𝑀 − 1 are the relaxed MINLP models of primal model with less integer variables. The 

subproblem 𝑠𝑢𝑏𝑃M is the fixed MINLP model of primal model. 

Proposition 1. If 𝑠𝑢𝑏𝑃C is feasible and the optimal objective value is 𝑍CH5<I, the upper bound of 

the optimum for the primal problem is 𝑍CH5<I. The upper bounds are updated iteratively when the 

better bound obtained from solving 𝑠𝑢𝑏𝑃! with 𝑚 < 𝑀. The optimal objective value of 𝑠𝑢𝑏𝑃M 

is the lower bound of the optimum for the primal problem. □ 

max			 𝑍!H5<I =∑ 𝐺,[𝑓[𝑋,\ + 𝐶<𝑌,\,   

s. t. 						𝐸𝑞𝑠.		(1) − (41)													∀	𝑞 ∈ 𝑄  

														𝑋, = 𝑋,>&K, 𝑌, = 𝑌,>&K				∀	𝑞 ∈ 𝑄!)LC,…,!BC
;46  

														𝑋, , 𝑌,				∀	𝑞 ∈ 𝑄!)L!
;46 		 

														𝑋, , 𝑌, ∈ [0,1]																			∀	𝑞 ∈ 𝑄!)L!FC,…,M
;46  . 

(𝑠𝑢𝑏𝑃!) 

𝑞 = 1			𝑞 = 2			𝑞 = 3			𝑞 = 4			𝑞 = 5													𝑞 = 𝑞’							𝑞 = 𝑞’’									𝑞 = |𝑄| − 2							𝑞 = |𝑄| 

𝑚′ = 1       𝑚′ = 2	     …     𝑚′ = 𝑚           𝑚′ = 𝑀 
							𝑄C;46 																				𝑄O;46 												…																𝑄!;46 													…			 										𝑄M;46 

…… … ……  
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Proposition 1 is self-evident based on the construction of the subproblems, which are either 

relaxed subproblems 𝑠𝑢𝑏𝑃!=, 𝑚′ = 1,… ,𝑀 − 1, or fixed subproblem 𝑠𝑢𝑏𝑃M. 

The proposed large-scale primal MINLP is decomposed into 𝑀 subproblems with fewer integer 

and continuous variables and constraints. This OA based on Fix-and-Relax strategy sequentially 

solves the generated subproblem 𝑠𝑢𝑏𝑃!, as shown in Figure 5. Therefore, the solution of the primal 

model is replaced by the solution of 𝑀 subproblems, which greatly reduces the solution difficulties. 

It should be pointed out that the solution obtained by the proposed OA-FR solution method is in 

general a suboptimal solution of the primal model since global optimality cannot be guaranteed. 

 

Figure 5. Illustration of Outer-Approximation with Fix-and-Relax strategy 

The implementation steps of the OA-FR are described as follows:  

Initialize: Cluster the scenario set 𝑄 into subsets 𝑄!;46 , 𝑚 = 1,… ,𝑀. Set 𝑚 = 1, the upper 

bound of the primal objective function as Eq. (41) 𝑍H5<I�������� = ∞. 

Step 1: Generate the subproblem 𝑠𝑢𝑏𝑃C according to the fixing and relaxing strategy for the 

integer variables. For 𝑠𝑢𝑏𝑃C, we relax the integer variables of the scenarios 𝑚 = 2,… ,𝑀	into the 

continuous variables within the range [0, 1]. 

Step 2: Solve the subproblem 𝑠𝑢𝑏𝑃C using the general OA algorithm. If the subproblem 𝑠𝑢𝑏𝑃C 

is feasible and the optimal value is 𝑍!LC∗H5<I, the upper bound of the objective function value of the 

primal problem is updated with 𝑍H5<I�������� = 𝑍!LC∗H5<I . Otherwise, if 𝑠𝑢𝑏𝑃C  infeasible, the primal 

model is also infeasible. STOP. 

Step 3: If 𝑚 < 𝑀, 𝑚 = 𝑚 + 1 . Generate subproblem model 𝑠𝑢𝑏𝑃! . Then solve the 

subproblem 𝑠𝑢𝑏𝑃! using the general OA algorithm. If 𝑠𝑢𝑏𝑃! is feasible, and the value of the 

Primal MINLP model 

OA with Fix-and-Relax strategy  

𝑠𝑢𝑏𝑃C 𝑠𝑢𝑏𝑃O	 𝑠𝑢𝑏𝑃! 	 𝑠𝑢𝑏𝑃M	

Decompose into Subproblems 
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objective function 𝑍!∗H5<I < 𝑍H5<I��������, the upper bound is updated with 𝑍H5<I�������� = 𝑍!∗H5<I.  

Step 4: When 𝑚 = 𝑀, the optimal objective value of the subproblem 𝑠𝑢𝑏𝑃M is the lower bound 

of the primal problem 𝑍H5<I, which also means the primal problem is feasible. 

Step 5: If the termination condition is satisfied, the solution of subproblem 𝑠𝑢𝑏𝑃M yield the 

optimal solution of the primal problem is STOP. 

Remark. When OA-FR terminates, and the relative gap (𝑍H5<I�������� − 𝑍H5<I)/𝑍H5<I  is not 

accepted, the scenario subsets can be clustered again. Eq. (43) states merging two adjoining scenario 

subsets into one subset, or dividing one scenario subset into two subsets. Then we restart the OA-

FR solution procedures based on updating scenario clustering subsets. 

We need to point out that the different clustering results of the scenarios lead to different 

subproblems, which may obtain different scheduling solutions with OA-FR for the same instance.  

5.	Numerical	experiments	

We implement our numerical experiments in GAMS 33.2.0 (Brook et al., 1988). The operating 

system is Windows 10, and Intel Core 2 Duo, CPU 2.7 GHz and 16 GB of RAM. The solutions of 

the MINLP problems are obtained using the solver DICOPT (Grossmann et al., 2002), and the 

solutions of the NLP and MILP problems are obtained using the CONOPT 3.0 (Drud, 1994) and the 

CPLEX 12.8 solvers (IBM CPLEX, 2018), respectively. 

5.1 Data 

The deterministic data of the numerical experiments is from a real refinery plant (Shah and 

Ierapetritou, 2011), whose superstructure is shown in Figure 1. There are 17 processing and blending 

units, 2 crude oil storage tanks, 5 intermediate storage tanks and 5 final oil storage tanks. There are 

2 types of crude oil and13 types of final oil product with consideration of 2 types of properties. The 

scheduling horizon is 72 and 96 hours. The number of the scheduling tasks is 19, and the number of 

the material states is 35. We set the number of events for each unit to 5 and 6, respectively. There 

are 4 customer orders that must be satisfied during the scheduling horizon, in which the demand of 

Orders 1 and 2 are uncertain. The demands and time windows of the 4 customer orders are given in 

Table 1. The demands of the final oil products flowing directly to the market are shown in Table 2.  

𝑄!BC;46 ∪ 𝑄!;46 ⇒𝑄!;46, 𝑄!;46 ⇒𝑄!;46 ∪ 𝑄!FC;46 . (43) 
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Table 1. Demand Information of Customer Orders  

Customer Order Order 1 Order 2 Order 3 Order 4 

Product category 5# DIE 0# DIE -10# DIE AK 

product name 5# Diesel 0# Diesel -10# Diesel Jet Fuel 

Product demand for 72 hours (kbbl) Uncertainty Uncertainty 80 200 

Time windows for 72 hours (h) [58, 71] [10, 20] [28, 46] [40, 70] 

Product demand for 96 hours (kbbl)  Uncertainty Uncertainty 100 200 

Time windows for 96 hours (h) [68, 90] [10, 20] [28, 46] [40, 80] 

Table 2. Demand of Final Oil Product Flowing Directly to Market 

Product Category GAS ISOO REF NC4 ALKY C5 GASL COKE RGAS 

demand (kbbl) 0 5 5 5 20 20 20 0 5 

We consider two types of uncertainties, order demand and product yield, for the production 

scheduling. The demand data and yield data are randomly generated within certain ranges, then 

obtained the scenario tree through Distribution Matching (Calfa et al., 2014). The scenario data of 

the demand uncertainties is given in Table 3, which is depicted through the scenario trees including 

4-6 nodes. Case 1 is the deterministic instance with the given demand. Cases 2-6 are the instances 

for the horizon of 72 hours with uncertainties in the demands. Cases 7-10 are the instances for the 

horizon of 96 hours. For Cases 5 and 10, there are two types of the product demand with 

uncertainties, which are depicted through a scenario tree with the three-dimension node values. 

Table 3. Scenario data for uncertain demand of the final oil products 

Case H(h) 
Demand 

Uncertainties 

Num. 

Scenes 

 Demand and Probabilities under Scenario Q 

Scenarios 1 2 3 4 5 6 

1 72 5#DIE 1 Deter. (kbbl) 40.99 / / / / / 

2 72 
5#DIE 

(Order1) 
4 

Demand (kbbl) 23.35   34.08   46.77   59.77   /   / 

Probabilities 0.14   0.27   0.26   0.33   /   / 

3 72 
5#DIE 

(Order1) 
5 

Demand (kbbl) 18.48   24.46   35.52   47.55   59.95   / 

Probabilities 0.01   0.13   0.28   0.25   0.34   / 
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4 72 
0#DIE 

(Order2) 
5 

Demand (kbbl) 43.24   44.46    49.45   55.31   59.12   / 

Probabilities 0.10   0.15   0.24   0.29   0.22   / 

5 72 
5#DIE(Order1) 

0#DIE(Order2) 
5 

5# Demand (kbbl) 18.48   24.46   35.52   47.55   59.95   / 

0# Demand (kbbl) 43.24   44.46    49.45   55.31   59.12   / 

Probabilities 0.01   0.13   0.27   0.25   0.34   / 

6 72 0#DIE(Order2) 6 
0# Demand (kbbl) 43.24   44.46    49.45   55.31   57.12   59.02 

Probabilities 0.002 0.15 0.24 0.29 0.22 0.10 

7 96 
5#DIE 

(Order1) 
4 

Demand (kbbl) 34.46 45.52 57.55 65.95 / / 

Probabilities 0.15 0.24 0.29 0.22 / / 

8 96 
5#DIE 

(Order1) 
5 

Demand (kbbl) 28.48 34.46 45.52 57.55 65.95 / 

Probabilities 0.002 0.15 0.24 0.29 0.22 / 

9 96 
0#DIE 

(Order2) 
6 

Demand (kbbl) 43.24   44.46    49.45   55.31   57.12   59.02 

Probabilities 0.002 0.15 0.24 0.29 0.22 0.10 

10 96 
5#DIE(Order1) 

0#DIE(Order2) 
6 

5# Demand (kbbl) 28.48 34.46 45.52 57.55 65.95 69.95 

0# Demand (kbbl) 43.24   44.46    49.45   55.31   57.12   59.02 

Probabilities 0.002 0.15 0.24 0.29 0.22 0.10 

The data of the CDU side-product yield uncertainties is shown in Table 4. Case 11 is with 

deterministic side-product yields, and Cases 12-20 are with uncertain side-product yields. To 

represent the realization of the yield uncertainties, we use the scenario tree with 3, 4, 5 and 6 nodes 

to represent the yield uncertainties.   

Table 4. Scenario data for uncertain yields of side-products 

Case H(h) 
Yield 

Uncertainties 

Num. 

Scenes 

Yield and Probabilities under Scenario Q  

Scenarios 1 2 3 4 5 6 

11 72 Side-product 1 1 Yield (%) 4.64      

12 72 Side-product 1 3 
Yield (%) 4.03 4.54 5.36 / / / 

Probabilities 0.21 0.39 0.40 / / / 

13 72 Side-product 1 5 
Yield (%) 3.80 4.16 4.48 5.09 5.53 / 

Probabilities 0.19 0.26 0.25 0.19 0.11 / 
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14 72 Side-product 1&2 4 

Yield 1 (%) 3.91 4.57 5.00 5.35 / / 

Yield 2 (%) 5.82 6.33 6.71 7.01 / / 

Probabilities 0.20 0.21 0.33 0.26 / / 

15 72 Side-products 1&2 5 

Yield 1 (%) 3.13 3.97 4.51 5.06 5.49 / 

Yield 2 (%) 5.09 5.99 6.45 7.10 7.36 / 

Probabilities 0.14 0.24 0.29 0.17 0.16 / 

16 96 Side-products 1  4 
Yield 1 (%) 4.03 4.54 5.06 5.36 / / 

Probabilities 0.11 0.25 0.40 0.24 / / 

17 96 Side-products 1  5 
Yield 1 (%) 3.80 4.16 4.48 5.09 5.53 / 

Probabilities 0.19 0.26 0.25 0.19 0.11 / 

18 96 Side-products 2  5 
Yield 2 (%) 5.82 6.33 6.71 7.01 7.36 / 

Probabilities 0.19 0.26 0.25 0.19 0.11 / 

19 96 Side-products 1&2 5 

Yield 1 (%) 3.80 4.16 4.48 5.09 5.53 / 

Yield 2 (%) 5.82 6.33 6.71 7.01 7.36 / 

Probabilities 0.19 0.26 0.25 0.19 0.11 / 

20 96 Side-products 1&2 6 

Yield 1 (%) 3.80 4.16 4.48 5.09 5.30 5.53 

Yield 2 (%) 5.82 6.33 6.71 7.01 7.22 7.36 

Probabilities 0.10 0.21 0.20 0.19 0.11 0.19 

We also consider the mixed uncertainties of the demand and the yield, which is given in Table 5. 

The scheduling horizon is 72 hours. The values of the scenario nodes are also obtained through 

Distribution Matching (Calfa et al. 2014), in which more than one uncertain entity are considered. 

Here, the distributions of demand and yield are assumed consistent. Cases 21, 22 and 23 are the 

mixed uncertainties of the demand for Order 1 and the yield of side-product 1, which scenario trees 

contain 3-5 nodes. Case 24 and Case 25 are the more complex instances, with respectively two type 

uncertainties of orders or yields mixing with one uncertainty of yield or order.   

Table 5. Data for simultaneous uncertainties of demand and yield  

Case H(h) 
Simultaneous 

Uncertainties 

Num. 

Scenes 

Demand and Probabilities under Scenario Q 

Scenarios 1 2 3 4 5 
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21 72 
Order 1/ 

Side-product 1 
3 

Demand (kbbl) 43.35 54.08 59.77 / / 

Yield (%) 4.03 4.53 5.36 / / 

Probabilities 0.21 0.39 0.40 / / 

22 72 
Order 1 /  

Side-product 1 
4 

Demand (kbbl) 43.35 54.08 56.77 59.80 /   

Yield (%) 4.03 4.53 5.36 5.50 / 

Probabilities 0.11   0.34   0.40  0.15   /   

23 72 
Order 1/ 

Side-product 1 
5 

Demand (kbbl) 43.35 47.07 54.08 56.77 59.80 

Yield (%) 4.03 4.27 4.54 5.36 5.50 

Probabilities 0.11   0.33   0.40  0.15   0.12 

24 72 
Orders 1&2/ 

Side-product 1 
5 

Order 1 (kbbl) 43.35 47.07 54.08 56.77 59.80 

Order 2 (kbbl) 43.24 44.46 49.45 55.31 59.12 

Yield 1 (%) 4.03 4.27 4.54 5.36 5.50 

Probabilities 0.11   0.33   0.40  0.15   0.12 

25 72 
Orders 1/ 

Side-products 1&2 
5 

Order 1 (kbbl) 43.35 47.07 54.08 56.77 59.80 

Yield 1 (%) 3.13   3.97   4.51   5.06   5.49   

Yield 2 (%) 5.09 5.99 6.45 7.10 7.36 

Probabilities 0.11   0.33   0.40  0.15   0.12 

5.2 Results 

We report the computational results of the instances with considerations of uncertain demand and 

yields, which are divided into three parts: the demand uncertainty, yield uncertainty and mixed 

uncertainty.  

5.2.1 Demand Uncertainty 

First, we solve the reformulated MINLP model with the input data Table 3 using DICOPT. The 

statistics of the model sizes and the results are shown in Table 6. The sizes of the deterministic 

equivalent stochastic model are generally 4-6 times of the original deterministic model, regardless 

of the number of integer variables, continuous variables and constraints. The solution time of the 

deterministic Case 1 is 5% of the solution time of the stochastic Cases 2-6 with the same horizon 

length 72 hours.  
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For deterministic Case 1, the net profit for the average demand is less than the net profit of the 

expected demand. The expected net profit of stochastic model is greater than the net profit of the 

deterministic model, compared Case 1 and Case 2. When the horizon length is increased to 96 hours, 

the solution time of the stochastic cases increases almost 10 times. When the scenario tree keeps the 

same structure with same numbers of nodes, like Case 4 and Case 5, the solution time is of the same 

magnitude order. Although there are two stochastic demand of customer orders in Case 5, compared 

there is only one uncertain order in Case4. The number of scenarios also partly determines the 

computational times in Cases 1-10.  

Table 6. Statistics for Cases 1-10 with uncertainties of order demand  

Case H(h) 
Num.  

Scenes 
Bin. Var. Cont. Var. Const. Iter. Obj. Value ($) CPU (s) 

1 72 0 640 5304 6354 5 38759.04 13.57 

2 72 4 2560 21513 25553 5 39013.95 226.58 

3 72 5 3200 26891 31941 3 39066.14 182.49 

4 72 5 3200 26891 31941 3 38812.11 269.81 

5 72 5 3200 26891 31941 4 39411.86 349.26 

6 72 6 3840 32269 38329 3 38914.49 335.08 

7 96 4 3072 25773 30769 5 40177.09 1788.15 

8 96 5 3840 32216 38461 4 40188.13 2826.75 

9 96 6 4608 38659 46153 5 44770.81 2020.39 

10 96 6 4608 38659 46153 3 44238.21 1127.38 

To decompose the problem, we apply our designed OA with Fix-and-Relax strategy to solve 

stochastic Cases 2-10, whose results are shown in Table 7. Here, the statistics of the model size is 

one subproblem 𝑠𝑢𝑏𝑃!  in OA-FR. For Case 2, OA-FR solves 4 subproblems with the listed 

problem sizes. We decompose the proposed model according to the scenarios and solve the 

subproblems sequentially with OA-FR for Cases 2, 3, 4, 5, 7, 8. For Cases 6, 9, 10 with six scenarios, 

we merge the first two subproblems into one subproblem and solve 5 subproblems in the solution 

process of OA-FR.     
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Table 7. Comparison results of OA-FR algorithm with DICOPT for Cases 2-10  

Case 
*Bin.  

Var. 

*Cont.  

Var. 
*Const. 

OA-FR DICOPT Gap 

OBJ 

% 

Saving 

CPU 

% Obj. ($) CPU (s) Obj. ($) CPU (s) 

2 320 37173 35039 38895.77 89.16 39013.95 226.58 0.30 60.65  

3 320 47904 44482 39056.99 166.37 39066.14 182.49 0.02 8.83  

4 320 47904 44482 38509.62 143.66 38812.11 269.81 0.78 46.76  

5 320 47904 44482 39094.55 163.73 39411.86 349.26 0.81 53.12  

6 320 58295 53925 38875.64 178.68 38914.49 335.08 0.10 46.68  

7 384 44809 42035 39566.92 116.96 40177.09 1788.15 1.52 93.46  

8 384 57213 53378 40011.44 296.40 40188.13 2826.75 0.44 89.51  

9 384 69617 64703 44563.11 327.60 44770.81 2020.39 0.46 83.79  

10 384 69617 64703 43964.52 482.39 44238.21 1127.38 0.62 57.21  

*Statistics numbers of variable and constraints are only problem size of the last subproblem in OA-FR. 

Compared with the simultaneous primal model, the reduced subproblem sizes of OA-FR are 

mainly in the discrete variables. The numbers of the discrete variables in the primal model are almost 

10 times the number of the discrete variables in the reduced subproblems of OA-FR. Therefore, the 

potential advantage for OA-FR is to be able to solve stochastic models with more scenarios. Using 

OA-FR solution method, we successfully solve all the stochastic cases. Compared with DICOPT 

directly solving the whole model, OA-FR greatly reduces the solution time, on average 60.00% and 

as high as 93.46%, as seen in Table 7. On the other hand, the objective values obtained through OA-

FR are somewhat lower than the objective values of DICOPT, with an average gap of 0.56% and a 

maximum of 1.52%.  

5.2.2 Yield Uncertainty 

The problem size and solution statistics of the stochastic scheduling model with uncertain yields is 

given in Table 8. As for the cases of demand uncertainties, the problem sizes of the stochastic yield 

cases are also about 5 times of the deterministic yield case. The solution time of the stochastic 

models increases 30 times compared to the deterministic case. The solution times are almost within 
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1000 seconds except Case 8. The computational times do not increase greatly by increasing the 

number of scenarios. Comparing Table 8 with Table 6, the yield uncertainties seem to require lower 

computational time than the demand uncertainties. The case with the deterministic yield obtains 

larger net profit than the cases with the stochastic yields, which means uncertain yields of side-

products lead to lower output of the final oil products compared with positive deterministic yields.  

Table 8. Statistics for Cases 11-20 with uncertainties of yield  

Case H(h) 
Num.  

Scenes 
Bin. Var. Cont. Var. Const. Iter. Obj. Value ($) CPU (s) 

11 72 0 640 5304 6359 3 39593.71 5.24 

12 72 3 1920 16135 19180 5 39526.49 111.81 

13 72 5 3200 26891 31966 5 39533.96 245.37 

14 72 4 2560 21513 25593 3 39485.07 127.21 

15 72 5 3200 26891 31991 3 39478.59 148.46 

16 96 4 3072 25773 30793 3 45336.39 553.13 

17 96 5 3840 32216 38521 3 45341.70 757.22 

18 96 5 3840 32216 38521 4 45315.79 1063.60 

19 96 5* 3840 32216 38521 3 45392.05 732.16 

20 96 6* 4608 38659 46225 3 45350.75 871.43 

Table 9 shows the statistics of OA-FR solving the stochastic Cases 12-20 compared to DICOPT. 

Through decomposition, there is 1/10 discrete variables in the reduced subproblems of OA-FR. The 

results of Cases 13, 14 and15 solving by OA-FR outperform the results when the whole models are 

solved directly by DICOPT. The worst case of the objective function value in OA-FR is Case 16, 

which is 1.02% relative deviation from the objective value of the whole model. The CPU times of 

OA-FR are significantly lower than the CPU times solving the whole model directly, with a 

maximum reduction of relative ratio of 71.74%. The increased relative ratio of computation time 

for OA-FR is 2-4 times from scheduling horizon 72 hours to 96 hours, compared with 5-10 times 

of OA solving the whole models by DICOPT. 
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Table 9. Comparison results of OA-FR algorithm with DICOPT for Cases 12-20 

Case 
*Bin.  

Var. 

*Cont.  

Var. 
*Const. 

OA-FR DICOPT Gap 

Obj. 

% 

Saving 

CPU 

% Obj. ($) CPU (s) Obj. ($) CPU (s) 

12 320 27122 25608 39490.90 68.31 39526.49 111.81 0.09 38.91 

13 320 47904 44507 39548.12 116.20 39533.96 245.37 0.04 52.64 

14 320 37513 35079 39500.37 75.13 39485.07 127.21 0.04 40.94 

15 320 47904 44532 39490.51 130.36 39478.59 148.46 0.03 12.19 

16 384 44809 42077 44874.20 156.33 45336.39 553.13 1.02 71.74 

17 384 57213 53408 45204.83 347.63 45341.70 757.22 0.30 54.09 

18 384 57213 53438 45159.69 357.10 45315.79 1063.60 0.34 66.43 

19 384 35289 52868 45042.33 209.86 45392.05 732.16 0.77 71.34 

20 384 43331 64091 45270.97 521.19 45350.75 871.43 0.18 40.19 

*Statistics numbers of variable and constraints are only problem size of the last subproblem in OA-FR. 

5.2.3 Simultaneous Uncertainties of Demand and Yield 

The computational results for the simultaneous demand and yield uncertainties are shown in Table 

10. For the structures of the scenario tree in the simultaneous cases are same to the former cases, 

the solution time of the simultaneous cases are similar to the solution time of the demand and yield 

uncertainties.  

Table 10. Statistics for Cases 21-25 with simultaneous uncertainties of demand and yield 

Case H(h) 
Num.  

Scenes 
Bin. Var. Cont. Var. Const. Iter. CPU (s) Obj. Value ($) 

21 72 3 1920 16135 19180 4 70.25 39870.22 

22 72 4 2560 21513 25573 4 88.45 39865.12 

23 72 5 3200 26891 31966 5 249.09 39682.01 

24* 72 5 3200 26891 31966 4 304.39 39688.43 

25* 72 5 3200 26891 31966 4 226.26 39692.87 
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*There are two orders and one yield of side-product uncertainties in Case 24. In Case 25, there is one 

orders and two yields of side-product uncertainties. 

Table 11 displays the results of OA-FR for the simultaneous uncertain cases. For the simultaneous 

uncertainties of demand and product yields, OA-FR still shows advantages in solution time since 

37.34% is saved on average. The relative deviations of objective function value for OA-FR are 

within 1.00%, compared with the primal OBJ values. For Case 22, the obtained objective function 

value of OA-FR is larger than the primal OBJ value. The proposed primal model is nonconvex, it is 

possible that the results of OA-FR method outperform the results of the primal model.  

Table 11. Comparison results of OA-FR algorithm with DICOPT for Cases 21-25 

Case 
*Bin. 

Var. 

*Cont. 

Var. 
*Const. 

OA-FR DCIOPT Gap 

OBJ 

% 

Save 

CPU 

% Obj. ($) CPU (s) Obj. ($) CPU (s) 

21 320 27122 25608 39813.53 49.26 39870.22 70.25 0.14 29.88 

22 320 37513 35059 39895.04 85.21 39865.12 88.45 0.08 3.66 

23 320 29643 44032 39290.18 118.49 39682.01 249.09 0.99 52.43 

24 320 47904 44507 39593.89 120.51 39688.43 304.39 0.24 60.41 

25 640 43852 41799 39588.10 135.00 39692.87 226.26 0.26 40.33 

*Statistics numbers of variable and constraints are only problem size of the last subproblem in OA-FR. 

Based on all the computational results, the OA-FR solution method may be a good choice for 

stochastic programming models, which are decomposable by scenarios. We can consider that design 

OA-FR for more general stochastic programming models.  

5.2.4 Stochastic scheduling results and implications  

Analyzing the scheduling results obtained from the proposed stochastic model, we simultaneously 

obtain multiple scheduling solutions under respective scenarios and expected net profit. Compared 

with the deterministic method, the stochastic method is able to illustrate different scheduling 

solutions and marginal benefit analysis.  

The scheduling solution of Scenario 2 in Case 2 is shown in Gantt chart in Figure 6. The data 

above the line states the number of processing task, and the data below the line states the flow 
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amount in the Gantt chart. The makespan of the refinery scheduling is 72 hours for all processes. 

Except individual flow changes, most of the tasks processed on the refinery units almost keep same 

flow amount, which is easy to be implemented in real production and management. Moreover, the 

starting and finishing times for all tasks are same. The delivery scheduling for the custom orders in 

Case 2 of Scenario 2 is given in Figure 7. It can be seen that Orders 2, 3, 4 are delivered in the 2 or 

3 batches from the storage tanks. There are the penalties for the delivery time for Orders 2, 3, 4, for 

the delivery time of Orders 2, 3, 4 is out of the required time windows.  

 

Figure 6. Scheduling solution of Gantt chart for scenario 2 in Case 2 

For real applications, the stochastic scheduling solution and expected net profit can be referred 

as the implemented schedule and as the profit margin. The multiple combination of the stochastic 

scheduling solutions under different scenarios provides alternative options. Furthermore, a 

sensitivity analysis for the scheduling solutions can be performed to analyze more uncertainties. 
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Figure 7. Gantt chart of order delivery scheduling for scenario 2 in Case 2 

6.	Conclusions	

This paper has addressed the stochastic scheduling for the whole refinery processes with 

uncertainties of demand and product yields. The scenario trees are used to represent the uncertainties. 

We define the two-stage stochastic scheduling problem for refinery-wide processes. A hybrid 

mathematical model of MINLP and GDP has been proposed to describe the stochastic scheduling 

problem based on continuous-time representation, which is decomposable by scenarios. Aiming at 

solving real large-scale instances, we developed an OA solution method based on the Fix-and-Relax 

strategy, which decomposes the proposed model into subproblems with the smaller problem size. 

By fixing and relaxing the discrete variables in the sub-problems, the number of discrete variables 

in the generated subproblems is reduced, which makes the improved OA algorithm computationally 

more effective. The decomposed subproblems in OA-FR keep all the constraints in the primal model, 

which guarantee that the obtained solutions are globally consistent and feasible. The results of 

numerical experiments show the validity and efficiency of the proposed model and solution method. 

Future work will focus on refinery scheduling with consideration of more complex uncertainties 

and global optimization method.  
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